SOAL DAN PEMBAHASAN GERBANG LOGIKA DAN TABEL KEBENARAN
Disini kita akan berlatih soal, setelah sebelumnya kita telah belajar mengenai teori dan tabel kebenaran pada logika AND, OR dan NOT.
1. Tentukan tabel kebenaran dari kombinasi garbang logika berikut !
Jawab :
A
|
B
|
C
|
A(inv)
|
B(Inv)
|
C(Inv)
|
D=(Ainv.B.Cinv)
|
E=(Binv.Cinv)
|
F=(D+E)
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
2. Tentukan tabel kebenaran dari 4 kombinasi input berikut !
Jawab:
A
|
B
|
C
|
D
|
F=invA
|
G=invC
|
H=A.B.C.D
|
I=F.G
|
J=H+I
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
0
|
0
|